
HTBasic 8.x DLL Toolkit Tips and Tricks

1. Creating a simple DLL

To create a simple DLL to be called from HTBasic using Microsoft
DevStudio 6.0:

First create a new project.

From the file menu select New.
Select the Projects tab.
Highlight Win32 Dynamic-Link Library and type in the name of your new
DLL in the Project Name: edit box.

Choose OK

Choose An empty DLL project and Finish on the next dialog screen.

Choose OK on the New Project Information Dialog.

At this point a new project has been created with no source files in it.
A C++ source file to hold our code now needs to be created.

From the File menu, choose New. Click on the Files tab and highlight C++
Source File. Type in the name of the source file in the File name: edit box.
Make sure the Add to project: check box is checked.

Choose OK.

A source file to place the C++ functions and sub-programs in now exists.

Type the C++ source code into the file just created.

A DLL like any C++ project can consist of multiple source files that are
compiled separately and then linked together. For simplicity this example
uses only one source file.

A file which designates which labels will be visible outside of the DLL now
needs to be created.

From the File menu, choose New, then choose the Files tab, and highlight
Text File. In the File name: edit box specify the name of the file as the
same name as the DLL with a .def extension. Again, make sure that the Add
to project: check box is checked.

Choose OK.

This file will list the labels that will be visible outside the DLL.

In the .def file just created type the word EXPORTS (all capital letters), and
then on the next lines list the labels from the project that other programs,
such as your HTBasic programs must be able to see.

Remember that C and C++ are case sensitive. The labels must be listed in
the .def file exactly the same as they are declared.

Save this file and build the project. Build the project by selecting the Build
menu item Build <DLLname> or Rebuild All. A hot-key shortcut to build a
project is F7. There is also an icon on the toolbar to build the project.

If the output window says “0 error(s), 0 warning(s)” then the DLL has been
successfully created and is ready to be used by other programs such as
HTBasic.

It is a good idea to write some documentation for your DLL. It should
include a list of all the exported labels, what they are, and how to use them.
This documentation is vital for a user that may be using your DLL. It will
also be useful if you ever have to remember what is in your DLL and the
original source code is not available or too inconvenient to check.

The nicer and more detailed you make your documentation, the happier its
users will be.

2. Using a DLL in HTBasic

To use sub-programs defined in a DLL one must make proper calls from
HTBasic into the DLL. Also, it is necessary to have access to and
knowledge of the DLL’s contents.

The DLL file that the HTBasic program calls must be located in a directory
where the operating system knows to look for DLLs. The two most
common places for the DLL to reside are: the current directory (MSI) in
which HTBasic is executing, and the windows\system or system32 directory.

It is necessary to know what is inside the DLL, particularly which labels
have been exported and the calling protocol for sub-programs and functions.
Hopefully there will be some documentation for the DLL.

Here is some sample documentation. It lists the four labels that have been
exported from SimpleDLLSample.dll, and their definitions. BasicMultiplier
is a variable, BasicMult is a function, MultValue and SeeMultiplier are sub-
programs. This also lists the needed parameters for each function and sub-
program, and gives a brief explanation of what each one does.

The HTBasic commands for using a DLL are:
DLL LOAD
DLL UNLOAD
DLL GET
DLL READ
DLL WRITE

There is also the LIST DLL command that will show a list of all the DLLs
currently loaded.

The syntax for the load command is:
DLL LOAD “dllname”

where dllname is the name of the DLL to load. Note that the extension .dll
should not be added to on the end of dllname. Again make sure that the .dll
file is located in a directory where the operating system knows to look for
DLLs.

The syntax for the unload command is:
DLL UNLOAD “dllname”
DLL UNLOAD ALL

If dllname is specified, that DLL is taken out of memory and HTBasic’s
access to it is lost. If ALL is specified, all DLLs are removed from memory.

The syntax for the get command is:
DLL GET “returntype dllname:label” AS “alias”

The AS “alias” part is optional if the label in the DLL conforms to
HTBasic’s case sensitive naming convention.

dllname is the name of the DLL that was loaded by the DLL LOAD
command.

label is one of the labels exported by the DLL. This is case sensitive; the
label must be specified exactly as it is defined in the DLL.

Valid returntypes are:
VARIABLE This means that this label is not a function or a

sub-program. It is a variable that can be used with
the DLL READ or DLL WRITE commands. It is
up to the programmer to make sure that the size of
the variable as it is used in HTBasic is the same
size as the variable as it is used in the DLL.

VOID This means that this label is a sub-program. No
return value is expected. It is up to the
programmer to know the number and sizes of the
parameters expected by this sub-program.

SHORT This means that this label is a function that returns
a 16-bit integer. This corresponds to an INTEGER
variable in HTBasic.

LONG This means that this label is a function that returns
a 32-bit integer. This corresponds to a LONG
variable in HTBasic.

DOUBLE This means that this label is a function that returns
an 8-byte floating point number. This corresponds
to a REAL variable in HTBasic.

CHAR This means that this label is a function that returns
a single ASCII character. This corresponds to a
single letter in a string in HTBasic.

CHARPTR This means that this label is a function that returns
an array of characters. This corresponds to a string
variable in HTBasic.

Remember that when calling a function, you must put an “FN” at the
beginning of the function name. Also, when calling a string function
(CHAR or CHARPTR) a “$” must be added at the end of the function name.
Note that all return types must be all capital letters.

The syntax for the read and write commands are:
DLL READ “varname”;basicvariable
DLL WRITE “varname”;basicvariable
DLL WRITE “varname”;value

varname is the name of the variable or alias specified in the DLL GET
command. basicvariable is the name of another variable declared in basic.
Make sure that the variables specified by varname and basicvariable are the
same size or memory could get corrupted.

value is a numeric value that can properly fit into the specified value.

To make sure that variables are the same size, here is a comparison between
HTBasic and standard C/C++ variable types.

HTBasic C/C++ Number of bytes
INTEGER short 2

_int16

LONG long 4
_int32

REAL double 8

N/A float 4

STRING char * 4
CString

COMPLEX N/A 16

I/O Path (@Path) void * 4

Use caution when using variables declared as int in C/C++. Depending on
the compiler being used and its settings, int can be either 2 bytes or 4 bytes.
It’s safer to specify short or long in the DLL.

Once the DLL has been created and some of its workings are understood, we
are ready to use it in an HTBasic program.

Some commentary about this sample program:

Line 20 IF NOT INMEM will be true if DLL “SimpleDLLSample” is not
currently loaded. This is a good way to ensure that a loaded
DLL is not loaded again.

Line 30 Loads the DLL “SimpleDLLSample.dll” into HTBasic’s
memory.

Line 50 This gets access to the variable “BasicMultiplier” located in
the DLL “SimpleDLLSample”. It designates that in HTBasic,
that variable is referred to as “Bmultvar”. Note that it does not
specify the type or the size of the variable. From the
documentation that came with the DLL, it can be determined
that it is a long integer. It will have to be treated as such.

Line 60 This gets access to the function “BasicMult” located in the
DLL “SimpleDLLSample”. It specifies that this function
returns a long integer and that HTBasic will refer to it as
“Multfunc”. Note that it does not specify the type, size, or
number of parameters for this function. This information can
be determined from the documentation for the DLL. In this
case the documentation indicates this function takes one long
integer as a parameter.

Line 70 These lines get access to the sub-programs “MultValue”
Line 80 and “SeeMultiplier” located in the DLL “SimpleDLLSample”.

They specify that HTBasic will refer to them as “Multval” and
“Seemult”. As with the function, the information about their
parameters has to be obtained from the documentation. In
these cases, “MultValue” takes the address of a long integer as
its parameter, and “SeeMultiplier” takes the address of a string
as its.

Line 120 ~ Declares some normal variables for working with the
Line 150 sample program. The documentation for “SeeMultiplier”

indicates any string passed to it must be big enough to hold 26
letters, plus the number of digits in “BasicMultiplier”. One
extra character space for the DLL to append a NULL must also
be reserved. If it is assumed that “BasicMultiplier” will never
be more than 5 digits long, the string must be dimensioned
26+5+1 characters long.

Line 170 Read a value from the DLL variable “Bmultvar” and assign it
into the HTBasic variable “Mbase”. Since “Mbase” is
declared as a LONG INTEGER, the DLL READ command will
read enough memory (4 bytes) to fill a LONG INTEGER.
From line 50, it is known that “Bmultvar” is HTBasic’s name

for the variable “BasicMultiplier” in the DLL
“SimpleDLLSample”. The documentation indicates that
“BasicMultiplier” has been declared as a long (also 4 bytes),
so the variable sizes are the same, so this is a safe read.

Line 200 This writes a value of 3 into the variable “Bmultvar” which is
really the variable “BasicMultiplier” in the DLL
“SimpleDLLSample”. Actually this action is not quite as safe
as the previous read. Since 3 is less than 32767 and greater
than –32768, HTBasic treats it as a regular INTEGER which is
only two bytes. Since we are writing into a variable that is 4
bytes, we can get away with it, but be aware that this could
cause problems if you are not careful. It is actually preferable
to put the value into a variable of the right size and use it
instead of the numerical constant.

Line 230 This is a call into the function “Multfunc” which puts the return
value into the HTBasic variable “Work2”. “Multfunc” is
really the function “BasicMult” located in the DLL
“SimpleDLLSample”. According to the GET command in line
60 this function returns a LONG. “Work2” is declared as a
LONG INTEGER so this is correct.
Since this is a function call, HTBasic requires an “FN” at the
beginning of the function name. If this function returned a
string, it would also require a “$” at the end of the function
name.
By default, HTBasic passes the address of a variable as a
parameter, but according to the documentation, the function
“BasicMult” is expecting a long value, not an address. The
extra set of parenthesis around the parameter “Work1” tell
HTBasic to pass the value contained in the variable, rather
than the address of the variable.

Line 280 Writes the value in the variable “Mbase” into the variable
“Bmultvar”, which is really the variable “BasicMultiplier” in
the DLL “SimpleDLLSample”. Unlike the write in line 200,
this will correctly write 4 bytes into the variable since “Mbase”
was declared as a LONG INTEGER.

Line 300 This is a call to the sub-program “Multval” which is really
“MultValue” in the DLL “SimpleDLLSample”. Note that the
documentation states that this sub-program is expecting the
address of a long, not the value of a long. By default HTBasic
passes addresses instead of values. The parameter can just be
listed in the normal way, unlike the call in line 230 which
required an extra set of parenthesis.

Line 360 This is a call to the sub-program “Seemult” which is really
“SeeMultiplier” in the DLL “SimpleDLLSample”. This sub-
program takes the address of a string as its parameter. Since
this sub-program actually writes into the string which it
receives, make sure that the string was dimensioned large
enough to handle the longest string that the sub-program will
write. In line 150 it was dimensioned as 32 bytes, which should
be large enough for our sub-program.

Line 390 This unloads the DLL from memory. If the DLL will no longer
be needed, it is good programming practice to unload it. If the
functions and sub-programs from the DLL will be needed again
soon, it is more efficient to leave it in memory.

The output of the sample program should look like this:

3. DLL Rules

1. Strings declared in HTBasic that will be passed to or
accessed by a DLL must be dimensioned at least one
character larger than the string will ever be.
C and C++ require a NULL character to be at the end of every string.
Although HTBasic does not use this same scheme, it will
accommodate the DLL by appending a NULL character to a string as
it is being passed. The string must be large enough to hold the extra
character. Strings that have been set or modified by the DLL must
also have the NULL character at the end.

2. DLLs must use the _cdecl calling convention.
Some languages (such as Visual Basic) that use the _stdcall calling
convention are not currently supported.

3. DLLs must appropriately use their access to HTBasic’s
memory.
There are two ways of passing parameters to a function or routine:
“by reference” and “by value”. “By value” means that a copy of the
variable’s value is passed to the function, so the function has no way
to affect the actual variable. “By reference” means that the address in
memory of the variable is sent to the function, so if the function
changes the variable, it is actually changing the original. By default
HTBasic passes variables by reference, so the DLL would then have
access into HTBasic’s memory. Using that access incorrectly will
corrupt HTBasic’s memory. The programmer needs to make sure that
the DLL is expecting the same type of variable that HTBasic is
passing. To force a variable to be passed by value instead of by
reference, enclose the variable in an extra set of parenthesis in the
parameter list. Literal numbers are always passed by value.

4. Each DLL function or routine called from HTBasic can
have a maximum of 80 bytes worth of parameters.
All parameters require 4 bytes except for a REAL that is passed by
value, which requires 8 bytes. Hence, there can never be more than
20 parameters.

5. A DLL function or routine cannot have the same name as
an HTBasic function or routine.
Actually, they can have the same name, but if they do, there will be no
way to call the DLL function. HTBasic will always find the HTBasic
routine first.

6. HTBasic and the DLL must agree on the size of the
variable or literal being written to or read from.
HTBasic, C and C++ all designate sizes of variables according to their
declared types. If different size designations for the same variable are
made by HTBasic and the DLL, it is possible to corrupt memory or
even crash the system. It is up to the programmer to enforce the
compatibility between HTBasic and the DLL.

4. Making an MFC DLL

To create an MFC DLL to be called from HTBasic using Microsoft
DevStudio 6.0:

First, create a new project.

From the file menu select New.
Select the Projects tab.
Highlight MFC AppWizard (dll) and type in the name of the new DLL in the
Project Name: edit box.

Choose OK

Leave the default options and choose Finish on the next dialog screen.

Choose OK on the New Project Information Dialog.

At this point a new project has been created. The MFCAppWizard has
created a few files for the project to start off with.

(In Microsoft’s vocabulary, a “Wizard” is a program that will help generate
code. It is very convenient for writing standard pieces of code that would
require a lot of system setup. Using the wizard can eliminate the need to
type in large tedious sections of system code. Of course the programmer
still has to type in the source code for the parts that are unique to his
program. The wizard frees him up to concentrate on that, rather than the
system support code. This sample uses the wizard fairly extensively.)

Choose the FileView tab in the workspace
window of DevStudio. By default this window
is located on the left edge of the DevStudio
program. Open the root directory and the
Source Files sub directory in the window.

The workspace tree shows that the
AppWizard has created 4 files: a .cpp file, a
.def file, a .rc file, and StdAfx.cpp.

The .cpp file contains source code that the
wizard generated.

The .def file contains some information about
this DLL. This is where the labels to be
exported by the DLL will be listed.

The .rc file contains resource information
about this DLL. (A resource is something

that the program will use that is not source code. Samples of resources are:
icons, bitmaps, menus, dialog boxes, etc.)

StdAfx.cpp is a system source file. It can be ignored.

To add a dialog box into the project, click on the Insert menu and choose
Resource….

On the Insert Resource
dialog box, highlight the
Dialog option and choose
New.

This will create a dialog box that can be edited graphically. It will also
show the “controls” window. It has a set of some of the objects that can be
put onto the dialog.

Click on the Static Text control (the one with the Aa). Move the mouse
inside the blue rectangle area in the dialog and click to place some text.

Change the size of the static text box by clicking on one of the blue squares
in the border with the left mouse button. While holding the left mouse button
down, move the mouse to adjust the size of the box.

To change the text in the static text box, click with the right mouse button on
the box, and choose Properties on the popup menu. This will bring a dialog
box to set the properties (or attributes) of the static text box. Click in the
Caption: text edit box and change the word “static” to any character string.

After closing the Text Properties dialog box, the caption change will be
reflected in the static text box on the main dialog.

Before using this dialog, some associated source code will have to be
generated. Using the wizard is the easiest way to do this.

From the View menu choose ClassWizard. This will detect that a dialog has
been created that has no associated source code. It will bring up a dialog
box asking to create a new class.

Choose Create a new class and click OK.

The wizard will then display a dialog box to set some information about the
new class that is being created. Type the name of the new class in the
Name: edit box. Notice that the wizard will automatically create a new
source file for this code.

Click OK.

The wizard will now display a dialog box to set more information about the
new class that has just been created.

Typically the defaults are acceptable, so choose OK.

The wizard has now created one more source file. It may be seen in the
source file list by clicking on the FileView tab of the workspace window.

Next, a sub-program that can be called from HTBasic needs to be created.
Place it in the main .cpp file.

Edit the main .cpp file by double clicking on its name in the workspace
window.

This is the file the code wizard generated.

In order to use the new dialog class that was just created, its information
must be included in the source file.

Each .cpp file has an associated .h file. Information about the source code is
contained in the .h file. If a file needs information about code in another
file, that other file’s .h file must be included.

Type in the “#include” command for the .h file of the new dialog that was
created.

Move to the end of the file and type in the sub-program.

In this sample “ShowHTBDialog” is the name of the sub-program that
HTBasic will eventually call.

“AFX_MANAGE_STATE(AfxGetStaticModuleState())” is a code macro that
Microsoft requires to be at the beginning of any DLL functions or sub-
programs that will use MFC. This must be the first line.

The line that says “MyCoolDialog SeeDialog” is a variable declaration. A
new type of variable has been defined in the file “MyCoolDialog.cpp”.
SeeDialog is declared as an instance of that variable type.

“SeeDialog.DoModal() is the call that actually shows the dialog box on the
screen. “DoModal” is an MFC built-in function to show dialog boxes.

In order for the routine “ShowHTBDialog” to be seen and accessed by other
programs, it must be exported by listing it in the .def file.

Edit the .def file.

Enter the name of the function or sub-program to be exported. Usually it is
easiest to cut and paste the name from the source file.

Save all the files and build the project by opening the Build menu and
selecting the Build menu item, by pushing the “F7” key, or by choosing the
build icon from the tool bar.

“0 error(s), 0 warning(s)” means that the DLL has been created and is
ready for use.

