HTBasic 8.x DLL Toolkit Tips and Tricks

1. Creating a simple DLL

To create assmple DLL to be called from HTBasic usng Microsoft
DevStudio 6.0:

First create a new project.

Fromthe file menu select New.
Sect the Projects tab.

Highlight Win32 Dynamic-Link Library and type in the name of your new
DLL in the Project Name: edit box.

few 2/ x|

Filez Projectz | Wiorkzpaces | Other Documents |

LA ATL COM Appiwizard 5| 'win32 Static Library Project name:

¢| Cluster Rezource Type Wizard |5il'ﬂli'|ED LLS ampld]

g<| Cugtom Appiafizard -

= Databasze Praject Lacatior:

D' eS hudia Add-in Wizard lD:"-.F'H QJECT S4SimpleDLLS arnp __]
A Estended Stored Proc 'wizard
B |5 AP Estenzion Wizard

M akefile

i MFC Activex, Controhwizard
8] MFC Appiwizard [dl]

M LFC Apptizard [exe)

@““K Mew D atabaze Wizard I HIEE ;I
i Utility Project

8] win32 Application

jWinSE Conzole Application Elatfl:n.rms:

(%) Wiina2 Diamie Link Libiary IW'”32

1| | i

¥ Create new workspace
" Add te cument waorkspace
™| Lependency of:

k. I Cancel

Choose OK

Choose An empty DLL project and Finish on the next dialog screen.

Choose OK on the New Project I nformation Dialog.

At this point a new project has been created with no source filesin it.
A C++ source file to hold our code now needs to be created.

Fromthe File menu, choose New. Click on the Filestab and highlight C++
Source File. Type in the name of the source file in the File name: edit box.
Make surethe Add to project: check box is checked.

hew 2| x|

Filez | Frojects | “Workspaces | Other Documents |

.-’-‘-.n::tive Cerver Page v &dd to project:

=14 Biniary File | SimpleDLLS ample -l
Bitmap Filz

[CAC++ Header File

[C++ Source File File name:

E& Curzar File
[@] HTML Page
Eﬁ lcon File Locatian:

E:Man:rn File [D:\PROJECTS SimpleDLLS amp .|

ISampIeS ource

£5 Flezource Script
2ol Besource Temnplate
SOL Script File
Text File

k. I Cancel

Choose OK.

A source file to place the C++ functions and sub-programs in now exists.

Type the C++ source code into the file just created.

B sampleSource.cpp * ;IQIEI

#include <=s=tdio. h:

A S S

¢ Thi= iz a long integer declared globally =0 it can be mnades
<« awallable to the calling program. It 1= used in the

s following functions and sub-program=s. We are initializing
S 1t to 1 =o that we can be sure that it will alwav=s have a
<« known valus in it.

long BaszicHultiplier = 1:

LTSS
Thi= 1= a function that can be called from HTBa=s=ic. It
¢ takes= a LOHG INTEGEE a= a parameter. The return wvalue
<« 1= parameter multiplied by the wvalus currently in

<« BazicHMultiplier.

long Ba=icMult{long HumberToMultiply)

long RetVal; < declare the wariable to use as a return values

A do the multiplication
FetVal = HumberToMultiply % BasicHMultiplier:

return FetVal: -~ return the nunber we created
T <+ BasicHult

S S
This iz a sub-program that can be called from HTBa=sic.
¢ Tt= parameter iz an address of a LOHG INTEGER. It then
<« m=e=z that address to reference the variable and multiply
S 1t by the walue currently in BasicHultiplier.

volid MultValue(long *VariableToAddjust)

(*®VariableToAdju=st) *= BaszicMultiplier:
1 s MultValus

S
< Thi= iz a sub-program that can be called from HTBasic.
<« Itz parameter 1= an address of a string which has been
#+ DIMensioned in HTBasic. Thi=z sub-program will write into
¢ that string. Make sure it ha= besn DIMensioned big enough.
<« 1n this casze 26 characters + the number of digits in
< BazicHultiplier.
volid SesMultiplieri{char #TargetString)
{
gprintf(TargetString.
"Multiplier i= currently: %1d". BasicHultiplier):

* A SeeMultiplier

L

A DLL like any C++ project can consist of multiple source files that are

compiled separately and then linked together. For simplicity this example

uses only one sourcefile.

A file which designates which labels will be visible outside of the DLL now
needs to be created.

Fromthe File menu, choose New, then choose the Filestab, and highlight
Text File. Inthe Filename: edit box specify the name of the file as the
same name as the DLL with a .def extension. Again, make sure that the Add
to project: check box is checked.

hew 21|

Filez | Projects | Workzpaces | Other Documents |

.-’-'-.u:tive Server Page v &dd to project:

g@nary FFiI.nla | SimpleDLLS ample R4
Z| Bitrnap File

[CAC++ Header File

[C++ Source File File name:

¢ Cursor File | 5impleDLLS ample. def
[@] HTML Page

Eﬁ lcon File Locatian:

Erﬂacrn File [D:\PROJECTS\SimpleDLLSamp .|

#5| Fesource Script
25l Fesource Template
SOL Script File
Test File

k. I Cancel

Choose OK.

This file will list the labels that will be visible outside the DLL.

In the .def file just created type the word EXPORTS (all capital letters), and
then on the next lines list the labels from the project that other programs,
such as your HTBasic programs must be able to see.

B simpleDLLSample.def =10 x|

EXPORTS —
Ba=zicHultiplier =
Ba=zicHMult

HultValue

SesMultiplier

Remember that C and C++ are case senditive. The labels must belisted in
the .def file exactly the same as they are declared.

Save thisfile and build the project. Build the project by selecting the Build
menu item Build <DLLname> or Rebuild All. A hot-key shortcut to build a
projectis F7. Thereisalso anicon on thetoolbar to build the project.

If the output window says “ 0 error(s), O warning(s)” then the DLL has been
successfully created and is ready to be used by other programs such as
HTBasic.

| PES

]

Configuration: SimpleDLlSample — WindZ Debug

Compiling. ..
SanpleSource. cpp
Linking. ..

SimnpleDLLSamnple.dll - 0 error(=)., 0 warning(=)

¥] Build { Dabug & Findin Files1 % Find in Filzs2 A1 4] | 3|

It isagood ideato write some documentation for your DLL. It should

include alist of al the exported labels, what they are, and how to use them.

This documentation is vital for a user that may be usng your DLL. It will

also be useful if you ever have to remember what isin your DLL and the
original source code is not available or too inconvenient to check.

B simpleDLLSample.doc i = | I:Ilﬁ]

Labels exported from the DLL SimpleDLlSamnple are:
BazicHultiplier
Ba=zicHMult
HultValues
SeeMultiplier

A S S

This 1z a long integer declared globally =o it can be made
<7 awailable to the calling program. It i= u=sed in the

<« following functions and sub-program=. We are initializing
S 1t to 1 =0 that we can be sure that it will always hawve a
<7 known walue in it .

long Ba=icHultiplier:

A S S
¢ This iz a function that can be called from HTBasic. It
<+ talkes a LOHG INTEGER a= a parameter. The return walue
<7 1= parameter multiplied by the walue currently in

< BazicHultiplier.

long BasicHult({long HumberToMultiply)

PP P P P P P P
7 Thi=s 1= a sub-program that can be called from HTBa=zic.
< Ttz parameter i= an addres=z of a LOHG INTEGEE. It then
< uses that addressz to reference the wariable and multiply
<7 1t by the waluse currently in BasicHMultiplier.

wold MultWValue(long *#VariableToAdjust)

A AL A AL A AL

¢ This iz a sub-program that can be called from HTBasic.

s Itz parameter iz an address of a =tring which has been

<7 DIHMensioned in HTBa=sic. This= sub-program will write into
< that =tring. Hake sure it has been DIMen=s=ioned big enough,
< in this caze 26 charactersz + the number of digits in

7 Ba=zicHMultiplier.

wolid Seslultiplier(char *TargetString)

=

The nicer and more detailed you make your documentation, the happier its

users will be.

2. Using a DLL in HTBasic

To use sub-programs defined in a DLL one must make proper calls from
HTBasicintothe DLL. Also, it is necessary to have access to and
knowledge of the DLL’s contents.

The DLL file that the HTBasic program calls must be located in a directory
where the operating system knows to look for DLLs. The two most
common places for the DLL to reside are: the current directory (MSl) in
which HTBasic is executing, and the windows\system or system32 directory.

It is necessary to know what isinside the DLL, particularly which labels
have been exported and the calling protocol for sub-programs and functions.
Hopefully there will be some documentation for the DLL.

B SimpleDLLSample.doc i =10 =i

—
Labels exported from the DLL SimpleDllSanple are: iJ
BazicHultiplier
BazicHMult
HultValue
SeeMultiplier

A S S

¢ This iz a long integer declared globally =o it can be made
<+ awvailable to the calling program. It iz used in the

< following functions and sub-program=s. We are initializing
< 1t to 1 =o that we can be sure that it will always hawve a
< lnown walue in 1it.

long BasicHultiplier:

EA AL LIS LTSS
Thi=z i= a function that can be called from HTBa=ic. It
<« takesz a LOHNG INTEGER a= a parameter. The return wvalue
</ 1= parameter multiplied by the walue currently in

< BazicHultiplier.

long BasicHult{long HumberToMultiply)

PP P P P P P P
<+ This iz a sub-program that can be called from HTBasic.
<7 It= parameter i= an addres=s of a LONG INTEGEE. It then
< uses that addressz to reference the wariable and multiply
<4 1t by the waluse currently in BasicMultiplier.

volid MultValue(long *VariableToddjust)

SIS LSS TS LTSS TS SIS TSI

¢ Thi=s 1= a =ub-program that can be called from HTBa=zic.

<« Ttz parameter i= an address= of a =tring which has been

<+ DIMen=zioned in HTBasic. Thi= sub-program will write into
7 that =tring. Make =sure it has been DIHensioned big enough.
¢ in thisz case 26 charactersz + the number of digits in

< BazicHMultiplier.

wold SeeMultiplier({char *TargetString)

Hereis some sample documentation. It lists the four 1abels that have been
exported from SmpleDLLSample.dll, and their definitions. BasicMultiplier
isavariable, BasicMult is a function, MultValue and SeeMultiplier are sub-
programs. Thisalso lists the needed parameters for each function and sub-
program, and gives a brief explanation of what each one does.

The HTBasic commands for using aDLL are:
DLL LOAD
DLL UNLOAD
DLL GET
DLL READ
DLL WRITE

Thereis aso the LIST DLL command that will show alist of al the DLLs
currently loaded.

The syntax for the load command is:
DLL LOAD “dliname’

where dllname is the name of the DLL to load. Note that the extension .dll
should not be added to on the end of dllname. Again make sure that the .dl
fileislocated in adirectory where the operating system knows to look for
DLLs.

The syntax for the unload command is:
DLL UNLOAD “dliname’
DLL UNLOAD ALL

If dllnameis specified, that DLL istaken out of memory and HTBasiC's
accesstoitislost. If ALL isspecified, al DLLs are removed from memory.
The syntax for the get command is:

DLL GET “returntype dlinamelabel” AS “alias’

The AS“alias’ part isoptiond if the label in the DLL conformsto
HTBasiC's case sensitive naming convention.

diinameis the name of the DLL that was |loaded by the DLL LOAD
command.

label is one of the labels exported by the DLL. Thisis case sensitive; the
label must be specified exactly asit is defined in the DLL.

Valid returntypes are:

VARIABLE This means that this label is not a function or a
sub-program. It isavariable that can be used with
the DLL READ or DLL WRITE commands. Itis
up to the programmer to make sure that the size of
the variable as it isused in HTBasic is the same
sze asthevariable asit isused in the DLL.

VOID This means that this label is a sub-program. No
return value is expected. It isup to the
programmer to know the number and sizes of the
parameters expected by this sub-program.

SHORT This means that this labdl is a function that returns
a 16-bit integer. This correspondsto an INTEGER
variable in HTBasic.

LONG This means that this labd is a function that returns
a 32-hit integer. This correspondsto a LONG
variable in HTBasC.

DOUBLE This means that this labd is a function that returns
an 8-byte floating point number. This corresponds
to aREAL variablein HTBasic.

CHAR This means that this label is a function that returns
asingle ASCII character. Thiscorrespondsto a
single letter in a string in HTBasic.

CHARPTR This means that this label is a function that returns
an array of characters. This correspondsto a string
variable in HTBasic.

Remember that when calling a function, you must put an “FN” at the
beginning of the function name. Also, when calling a string function
(CHAR or CHARPTR) a“$’ must be added at the end of the function name.
Note that al return types must be al capita |etters.

The syntax for the read and write commands are:
DLL READ “varnam€’;basicvariable
DLL WRITE “varname’;basicvariable
DLL WRITE “varnamg’;value

varname is the name of the variable or alias specified in the DLL GET
command. basicvariable isthe name of another variable declared in basic.
Make sure that the variables specified by varname and basicvariable are the
same Size or memory could get corrupted.

valueis a numeric value that can properly fit into the specified value.

To make sure that variables are the same size, here is a comparison between
HTBasic and standard C/C++ variable types.

HTBadc C/C++ Number of bytes

INTEGER short 2
_intl6

LONG long 4
_int32

REAL double 8

N/A float 4

STRING char * 4
CString

COMPLEX N/A 16

I/O Path (@Path) void * 4

Use caution when using variables declared asint in C/C++. Depending on
the compiler being used and its settings, int can be either 2 bytes or 4 bytes.
It's safer to specify short or long inthe DLL.

Once the DLL has been created and some of its workings are understood, we
are ready to use it in an HTBasic program.

:TransEra - HTBasic - [C:4 Training'SimpleDLL SimpleDLLTest] = |EI|5|
ﬁFiIe Edit Search “iew ©Options Run Debug Tools Help -|E’|£|
D] &|[Zl# blov|n|n|d]| soE] o]]5%] 22| L] o]5x6]0e

10 .:J

20 IF HOT IHMEM({"SimpleDllSample") THEH

an DLL LOAD "SimpleDLIlSample"

40

g0 DLL GET "WARIAFELE SimpleDlLlSample:BasicMultiplier" AS "Bmultwvar"

60 DLL GET "LOHG SimpleDLlSample:BaszicHult" AS "Multfunc"

70 DLL GET "VOID SimpleDLlSample:HultValus" AS "Hultwal'

g0 DLL GET "VOID SimpleDLlSample:Seedultiplier” AS "Seemult’

90

100 EHD IF

110

120 LOHG Mbase

130 LOHG Workl

140 LOHG Work?2

150 LIM Showstrings[32]

160

170 CDLL EEAD "Bmultvar":Hbasze

180 FRINT "Mha=ze i=: " Mba=e

190

200 DLL WRITE "Bmultwar";3

210

220 Worlkl=27

230 WorkZ=FHMultfunc{{Workl)})

240

250 FEINT "Workl i=: " Workl:" Work:2 i=: ":Workd

260

270 Mbaze=Hbase+1

280 DLL WRITE "Bnultwar"':Hbase

290

oo Hultwal({Workl)

310 FRINT "Workl i=: " Workl:" Work? is: ":Work?

320

330 DLL EEAD "Bmultwvar":Hba=ze

340 FRINT "Mba=ze i=: " ;Mba=e

a0

360 Seemult{Shovstrings)

370 FREINT Showstring$

380

390 DLL UHLOAD "SimpleDLlLSanple"

400 EHD

410 e
:J »
| |

[|Edit [4

Some commentary about this sample program:

Line20 IF NOT INMEM will betrueif DLL “ SmpleDLLSample” is not
currently loaded. Thisisa good way to ensure that a loaded
DLL isnot loaded again.

Line30 Loadsthe DLL “ SmpleDLLSample.dll” into HTBasic's
memory.

Line50

Line60

Line70
Line 80

Line 120 ~
Line 150

Line170

This gets access to the variable “ BasicMultiplier” located in
the DLL “ SmpleDLLSample’ . It designatesthat in HTBasic,
that variable isreferred to as* Bmultvar” . Note that it does not
specify the type or the size of the variable. Fromthe
documentation that came with the DLL, it can be determined
that it isalong integer. It will have to be treated as such.

This gets access to the function “ BasicMult” located in the
DLL “SmpleDLLSample” . It specifies that this function
returns a long integer and that HTBasic will refer to it as
“Multfunc” . Note that it does not specify the type, size, or
number of parameters for this function. Thisinformation can
be determined from the documentation for the DLL. Inthis
case the documentation indicates this function takes one long
integer as a parameter.

These lines get access to the sub-programs “ MultValu€’

and “ SeeMultiplier” located inthe DLL “ SmpleDLLSample” .
They specify that HTBasic will refer to themas“ Multval” and

“ Seemult” . As with the function, the information about their
parameter s has to be obtained from the documentation. In
these cases, “ MultValue® takes the address of a long integer as
its parameter, and “ SeeMultiplier” takes the address of a string
asits.

Declares some normal variables for working with the

sample program. The documentation for “ SeeMultiplier”
indicates any string passed to it must be big enough to hold 26
letters, plus the number of digitsin “ BasicMultiplier” . One
extra character space for the DLL to append a NULL must also
bereserved. Ifitisassumed that “ BasicMultiplier” will never
be more than 5 digits long, the string must be dimensioned
26+5+ 1 characterslong.

Read a value fromthe DLL variable “ Bmultvar” and assign it
into the HTBasic variable “ Mbase”. Snce* Mbase’ is
declared asa LONG INTEGER, the DLL READ command will
read enough memory (4 bytes) to fill a LONG INTEGER.
Fromline 50, it is known that “ Bmultvar” isHTBasic's name

for the variable “ BasicMultiplier” inthe DLL
“SmpleDLLSample” . The documentation indicates that

“ BasicMultiplier” has been declared as a long (also 4 bytes),
so the variable sizes are the same, so thisis a safe read.

Line200 Thiswritesa value of 3 into the variable “ Bmultvar” whichis
really the variable “ BasicMultiplier” in the DLL
“SmpleDLLSample’ . Actually this action is not quite as safe
asthepreviousread. Snce 3islessthan 32767 and greater
than —32768, HTBasic treatsit asaregular INTEGER whichis
only two bytes. Sncewe arewriting into a variablethat is4
bytes, we can get away with it, but be aware that this could
cause problemsiif you are not careful. It isactually preferable
to put the value into a variable of theright size and use it
instead of the numerical constant.

Line230 Thisisa call into the function “ Multfunc” which putsthe return
value into the HTBasic variable “ Work2” . “ Multfunc” is
really the function “ BasicMult” located in the DLL
“SmpleDLLSample’ . According to the GET command in line
60 thisfunction returnsa LONG. “Work2” isdeclared asa
LONG INTEGER so thisis correct.

Sncethisisa function call, HTBasic requiresan “ FN” at the
beginning of the function name. If this function returned a
string, it would also requirea “$” at the end of the function
name.

By default, HTBasic passes the address of a variable as a
parameter, but according to the documentation, the function
“BasicMult” is expecting a long value, not an address. The
extra set of parenthesis around the parameter “ Work1” tell
HTBasic to pass the value contained in the variable, rather
than the address of the variable.

Line280 Writesthe value in the variable “ Mbase” into the variable
“Bmultvar” , which isreally the variable “ BasicMultiplier” in
the DLL “ SmpleDLLSample” . Unlike the writein line 200,
thiswill correctly write 4 bytes into the variable since “ Mbase”
was declared asa LONG INTEGER.

Line 300

Line 360

Line390

Thisisa call to the sub-program“ Multval” which isreally
“MultValue’ inthe DLL “ SmpleDLLSample’ . Note that the
documentation states that this sub-program is expecting the
address of a long, not the value of along. By default HTBasic
passes addresses instead of values. The parameter can just be
listed in the normal way, unlike the call in line 230 which
required an extra set of parenthesis.

Thisisa call to the sub-program* Seemult” whichisreally

“ SeeMultiplier” inthe DLL “ SmpleDLLSample”’. This sub-
program takes the address of a string as its parameter. Snce
this sub-program actually writes into the string which it
receives, make sure that the string was dimensioned large
enough to handle the longest string that the sub-program will
write. Inline 150 it was dimensioned as 32 bytes, which should
be large enough for our sub-program.

Thisunloads the DLL from memory. If the DLL will no longer
be needed, it is good programming practice to unload it. If the
functions and sub-programs fromthe DLL will be needed again
soon, it ismore efficient to leave it in memory.

The output of the sample program should look like this:

ETransEra - HTBasic - [E:"-.,Training"-.,5impIeDLL"-.,SimpleDl_'Ef: sk’ o= -10] x|
éFiIe Edit Search Wiew Options Run Debug Tools Help == =]
D|=|E| & <l pw|n|m 4] maE] 253 2] L] 05w o
Mbase is: 1

Work1 is: 27 Work? is: 81

Work1 is: 54 Work? is: 81

Hbase is: 2

Multiplier is currently: 2

G ONT I HUER]

3. DLL Rules

1. Stringsdeclared in HTBasic that will be passed to or
accessed by a DLL must be dimensioned at least one

character larger than the string will ever be.

C and C++ require aNULL character to be at the end of every string.
Although HTBasic does not use this same scheme, it will
accommodate the DLL by appending a NULL character to astring as
it isbeing passed. The string must be large enough to hold the extra
character. Strings that have been set or modified by the DLL must
also have the NULL character at the end.

2. DLLsmust usethe cdecl calling convention.

Some languages (such as Visual Basic) that usethe _stdcall calling
convention are not currently supported.

3. DLLsmust appropriately usetheir accessto HTBasic's

memory.

There are two ways of passing parameters to a function or routine:
“by reference” and “by value’. “By value’ means that a copy of the
variable' s value is passed to the function, so the function has no way
to affect the actua variable. “By reference” means that the addressin
memory of the variable is sent to the function, so if the function
changes the variable, it is actually changing the origina. By default
HTBasic passes variables by reference, so the DLL would then have
accessinto HTBasic’'s memory. Using that access incorrectly will
corrupt HTBasic’s memory. The programmer needs to make sure that
the DLL is expecting the same type of variable that HTBasic is
passing. To force a variable to be passed by value instead of by
reference, enclose the variable in an extra set of parenthesisin the
parameter list. Litera numbers are always passed by value.

4. Each DLL function or routine called from HTBasic can
have a maximum of 80 bytes worth of parameters.

All parameters require 4 bytes except for a REAL that is passed by
value, which requires 8 bytes. Hence, there can never be more than
20 parameters.

5. ADLL function or routine cannot have the same name as
an HTBasic function or routine.
Actually, they can have the same name, but if they do, there will be no

way to call the DLL function. HTBasic will aways find the HTBasic
routine firt.

6. HTBasic and the DLL must agree on the size of the

variableor literal being written to or read from.

HTBasic, C and C++ dl designate sizes of variables according to their
declared types. If different size designations for the same variable are
made by HTBasic and the DLL, it is possible to corrupt memory or
even crash the system. It is up to the programmer to enforce the
compatibility between HTBasic and the DLL.

4. Making an MFC DLL

To create an MFC DLL to be caled from HTBasic using Microsoft
DevStudio 6.0:

First, create a new project.

From the file menu salect New.
Sdlect the Projects tab.

Highlight MFC AppWizard (dll) and type in the name of the new DLL in the
Project Name: edit box.

vew 21|

Filez Projectz | Wiorkzpaces | Other Documents |

WA ATL COM Appiwizard %] win32 Static Library Project name:

¢ | Cluster Resource Type Wizard !M FCOLLS ample

gi<| Cuztom Appiwizard =

= Database Project Lacatior:

D' eS hudia Add-in Wizard lD:"-.F'H QJECTSYMFCDLLS ample J
A Extended Stored Proc Wizard

L |S AP Extension Wizard

M akefile

fim MFC ActiveX, Controhw/izard
8] MFC Appiwfizard [dll]

M MFC Appiwizard [exe]

@“’7{: Mew D atabaze Wizard IHTBBH ;I
i Utility Project

8] "win32 Application _

jWinSE Conzole Application Elatfcu.rms.

[%] Wina2 Dynamic Link Library IW'”32

1| | i

¥ Create new workspace
" Add to cument workspace
[T Dependency of:

]S I Cancel

Choose OK

Leave the default options and choose Finish on the next dialog screen.

Choose OK on the New Project I nformation Dialog.

At this point a new project has been created. The MFCAppWizard has
created afew files for the project to start off with.

(In Microsoft’s vocabulary, a“Wizard” is a program that will help generate
code. Itisvery convenient for writing standard pieces of code that would
require alot of system setup. Using the wizard can eliminate the need to
type in large tedious sections of system code. Of course the programmer
still has to type in the source code for the parts that are unique to his
program. The wizard frees him up to concentrate on that, rather than the
system support code. This sample uses the wizard fairly extensively.)

i 2] x|
Drkspace 'WFCOLLS ample’ 1 pre Choose the FileView tab in the Workspace
=+ MFCDLLSample files window of DevSudio. By default thiswindow

Edij“ﬁﬁggﬁsﬂmplmp is located on the |eft edge of the Dev&udio

5] MFCOLLS ample. def program. Open the root directory and the

(2] MFCDLLS ample. Source Files sub directory in the window.
E Stdafx.cpp
[+1--[2 Header Files
-1 Resource Files The workspace tree shows that the
- [E] ReadMe.tu AppWizard has created 4 files: a.cpp file, a

.def file, a.rcfile, and StdAfx.cpp.

The .cpp file contains source code that the
wizard generated.

The .def file contains some information about
thisDLL. Thisiswhere the labelsto be
exported by the DLL will be listed.

< | H
B2 Class.. | g5 Fleso...) (=] Fievi. |

F

The .rc file contains resource information
about thisDLL. (A resource is something
that the program will use that is not source code. Samples of resources are:
icons, bitmaps, menus, dialog boxes, etc.)

StdAfx.cpp is a system source file. It can be ignored.

To add a dialog box into the project, click on the I nsert menu and choose
Resource....

Insert Resource 2]
- _ On the Insart Resource
ezource fppe; Mew . . .
@ Accelerator — dialog box, highlight the
I%I Bitmap 'mP_D“| Dialog option and choose
- Curzar
.. _Cwon. | New.
HTML C |
L NI _ Concd |
E Meru

abe Stiing Table
=4 Toaolbar
Yersion

Thiswill create a dialog box that can be edited graphically. It will also
show the * controls’” window. It has a set of some of the objects that can be
put onto the dialog.

£

N 3|4 abl

: - = O

555 : B E @ g

2 3 g $ m - G

= —— = = o El

E j ArCe - a_.& E ﬁ =
—i 5 € B

i

Click on the Static Text control (the one with the Aa). Move the mouse
insde the blue rectangle area in the dialog and click to place some text.

Change the size of the tatic text box by clicking on one of the blue squares
in the border with the left mouse button. While holding the left mouse button
down, move the mouse to adjust the size of the box.

_|o] x|
vl |_l
]
- Cancel
i | KRR PIAAARARARR | O |
iStatlc "
S | R, =

To change the text in the static text box, click with the right mouse button on
the box, and choose Properties on the popup menu. Thiswill bring a dialog
box to set the properties (or attributes) of the static text box. Click in the

Caption: text edit box and change the word “ static” to any character string.

Text Properties |
~ c@ General | Styles | Extended Stolez |

ID: [IDC_STATIC x| Caption: |l Love HTBasid

v \izible V¥ Group [” HelplD
[Dizabled [~ Tabstop

After closing the Text Properties dialog box, the caption change will be
reflected in the static text box on the main dialog.

_{ol x|
o
x|
- Cancel
A - l -
!I Love HTBaszic &
ot et &

Before using this dialog, some associated source code will have to be
generated. Using the wizard is the easiest way to do this.

Fromthe View menu choose ClassWizard. Thiswill detect that a dialog has

been created that has no associated source code. It will bring up a dialog
box asking to create a new class.

Adding a Class | cd |
IDD_DIALOGT iz a new rezource. Since it is a
dialog resource you probably want to create a

new clazs for it You can also select an exizting

Cancel
clasz.

o) Create a new class

" Select an existing class

Choose Create a new class and click OK.

Thewizard will then display a dialog box to set some information about the
new class that is being created. Type the name of the new classin the
Name: edit box. Notice that the wizard will automatically create a new

source file for this code.

— Clazz information oK. I
M ame; IM}IEDDIDiaIDd
Cancel |
File narme; |I'-1yEu:u::IDiaIu::g.u:pp

Change... |

Baze class: IEDiang j

Dialog ID: {IDD_DIALOGY =
—Autornatioh

&+ Maone

" Automation
| Createable by tipe (D IMFEDLLSaranE.MyEDDIDia

Click OK.

Thewizard will now display a dialog box to set more information about the
new class that has just been created.

tezzage Maps | tdember Y ariables | Automation | Actives Events | Clazs [nfo I

Froject; Clazz name; Add Dlass . |
PFCOLLS arnp M pCoolDialog b
I J SddiFunetion |

Dt sMuCoolDialog.h, D6 MuCoolDialog. cpp
Object |Da: Meszsages:

IDCANCEL BN_CLICKED :
BN _DOUBLECLICKED Edit Code

DOk

e

Lrelete Functian |

kyCoolDialog

tember functions;

YW DoDataEschange

Dezcription:

k. I Cancel

Typically the defaults are acceptable, so choose OK.

The wizard has now created one more sourcefile. It may be seenin the
source file list by clicking on the FileView tab of the workspace window.

| alx]
Workzpace RAFCOLLS ample': 1 pr
=-E8 MFCDLLS ample files

=423 Source Files
L MFCOLLS ample.cpp

L MFCOLLS ample. def

-] MFCDLLS ample.r

fpCaoollhala 0.Cpp
[#] Stdafs.cpp

7] Header Files

-2 Resource Files

------ Readhd e tut

< | H
B3 Class.. | @] Reso... | (] Filevi. |

Next, a sub-program that can be called from HTBasic needs to be created.
Place it in the main .cpp file.

Edit the main .cpp file by double clicking on its name in the workspace

window.

L

B MFCDLLSample.cpp
< MFCDLLSample . cpp

14|

=10l x|

Define=s the initiali

#include "stdafx. h"
#include "MEFCDLLSample k"

#ifdef _DEBUG
#define new DEBUG_HEW
fundef THIS_FILE

static char THIS FILE[] = __FILE_ :

#endif

Tl

<« Hotel

A

S If thi= DLL i= dvnamically linked against the HEFC

i DLL=s. anv functionz= exported from this DLL which

o call into MFC must hawe the AFE MANAGE STATE macro

£ added at the wervy beginning of the function.

T

i For examnple:

A

kg extern "C" BOOL PASCAL EEIPCRT ExportedFunctioni)

A

oy AFY MANAGE STATE(AfzGetStaticHoduleState()):

Pl < normal function body here

e 1

T

I It i= wervy important that this macro appear in =ach

o function, prior to anv calls into HEFC. Thiz meanz that
i it mu=t appear asz the first s=tatement within the

o function, ewven before anv object wariable declarations
o az thelr constructors may generate calls into the HEC
P DIL.

A

Vs Fleaze === HFC Technical Hotes 33 and 58 for additional
e detail=.

A

BEGIN_MESSAGE MWAP(CHFCDLLSampledpp, CWindpp)

SoLLAFE MSG MAP(CHFCDLLSampledpp)

< HOTE — the ClazsWizard will add and remove napplihg mac

Ntinn routines for the D}:

B P P P P P R P P P P P S
0 CHMFCDLLSampleldApp

10
it T HNT FNOTT what o1 === 1w thes= hlacl= ~f rn=-'n|=1ﬂ.=|+|=i|;|_
vl 4
A

Thisisthe file the code wizard generated.

In order to use the new dialog class that was just created, its information
must be included in the sourcefile.

Each .cpp file has an associated .h file. Information about the source codeis

contained in the .h file. If afile needs information about code in another
file, that other file's .h file must be included.

Typein the® #include’” command for the .h file of the new dialog that was

created.

B MFCDLLSample.cpp ;lglil

< MECDLLSample. cpp @ Defines the initialization routines for the
e

#include "stdaf=z. h'
#include "HFCDLLSample. h"
#include "MyCoolDialog. h”

#ifdef _DEBUG
#define new DEBUG_HEW
#undef THIS_FILE

static char THIS_FILE[] = __FILE :

#endif

it

< Hotel

i

e If thi= DILL i=s dvnamically linked again=t the HFC

o DLL=. anv functions exported from thi= DLL which

P —all into MFC must hawve the AFE MANAGE STATE macro

b added at the werv beginning of the function.

e

A For example:

A

L extern "C" BOOL PASCAL EXPORT EzportedFunctioni)

£ i

e AFE_MANAGE_STATE{AfmGetStaticHModuleState()):

£ S normal function body here

b T

£

o It 1= werv important that this macro appear in each

b function. prior to anvy calls into MFC. Thi= mean= that
o it must appear a= the first =tatement within the

£ function, even before any object wariable declarations
T az their constructors may generate calls into the HFC
i DIL.

-

s Please =ee MFC Technical Hotes 33 and 58 for additional
T details=s.

i

< CHFCDLLSampleApp

BEGIN_MESSAGE MAP({CHMFCDLISampledipp. CWindpp)
S LAFE MSG MAP(CMFCDLISampledpp)

1 |

D?:

S S

Move to the end of the file and type in the sub-program.

B MFCDLLSample.cpp =10] x|

//’/////////////////.//////////////////////////////’//////f///////’////j
<« The one and only CHFCDLILSanpleipp object

CHFCDLLSamnpleApp theldpp:

Sesssss Bnd of wizard generated code Ol sl sl S0 S80S
SES7S0 Start of user code ol S S
vold ShowHTEDialogl)
- AFX MANAGE STATE(AfzGetStaticModulsState()):
MyCoolDialog Seelialog;
Seelialog. Dolodal ()

T < ShowHTBDialog

e | H 4

In this sample * ShowHTBDialog” is the name of the sub-program that
HTBasic will eventually call.

“ AFX_MANAGE_STATE(AfxGetSaticModuleState())” is a code macro that
Microsoft requires to be at the beginning of any DLL functions or sub-
programs that will use MFC. This must be the first line.

The line that says “ MyCoolDialog SeeDialog” isa variable declaration. A
new type of variable has been defined in the file “ MyCool Dialog.cpp” .
SeeDialog is declared as an instance of that variable type.

“ SeeDialog.DoModal() is the call that actually shows the dialog box on the
screen. “DoModal” isan MFC built-in function to show dialog boxes.

In order for the routine “ShowHTBDiaog” to be seen and accessed by other

programs, it must be exported by listing it in the .def file.

Edit the .def file.

; MFCDLISample.def : Declares the module parameters for the DLL.

LIBRARY "MFCDLLSanple"
DESCRIFTION 'HFCDLILSample Windows Dynamic Link Library'

EXPORTS
| ; Ezxplicit eports can go here

[|

B MFCDLLSample.def u =10 %]
j—

Ld:

Enter the name of the function or sub-programto be exported. Usuallyitis

easest to cut and paste the name from the source file.

; MFCDLILSample.def : Declares the module parameters for the DLL.

LIBREARY "MFCDLILSanple"
DESCRIPTION 'HFCDLILSample Windows Dynamic Linl Library!'

EXPORTS
; Explicit exports can go here
SthHTBDialde

B MFCDLLSample.def i =1o] %]
j—

Save all thefiles and build the project by opening the Build menu and

selecting the Build menu item, by pushing the “ F7” key, or by choosing the

build icon from the tool bar.

Configuration: HFCDLLSample — WiniZ Debug

[EY

Compiling resources. . .
Compiling. ..
Stdif=x.cpp
Compiling. . .
HFCDLLSample . cpp
MyCoolDialog . cpp
Generating Code. . .
Linking. ..
Creating librarv Debug-MFCDLLSample. lib and object Debug-HFCDLLSample. exp

HFCDLISample.dll — 0 error{s). 0 warning(s)
| 4] * I, Euild { Debug % Find in Files1 Findin Files2 %] 4| |

-

w5

“0Oerror(s), Owarning(s)” means that the DLL has been created and is
ready for use.

